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Abstract

We report results of a search for supersymmetry (SUSY) with gauge-mediated symmetry breaking in di-photon events collected by the D0
experiment at the Fermilab Tevatron Collider in 2002–2006. In 1.1 fb−1 of data, we find no significant excess beyond the background expected
from the standard model and set the most stringent lower limits to date for a standard benchmark model on the lightest neutralino and chargino
masses of 125 GeV and 229 GeV, respectively, at 95% confidence.
© 2007 Elsevier B.V. All rights reserved.

PACS: 14.80.Ly; 12.60.Jv; 13.85.Rm
Low-scale SUSY is one of the most promising solutions to
the hierarchy problem associated with the intrinsic disparity be-
tween the electroweak and Planck scales. It postulates that for
each known particle there exists a superpartner, thereby stabi-
lizing the radiative corrections to the Higgs boson mass. Bosons
have fermion superpartners, and vice versa. None of the su-
perpartners have yet been observed, and superpartner masses
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� Deceased.
must therefore be much larger than those of their partners, i.e.,
SUSY is a broken symmetry. Experimental signatures of su-
persymmetry are determined through the manner and scale of
SUSY breaking. In models with gauge-mediated supersymme-
try breaking (GMSB) [1,2], it is achieved through the intro-
duction of new chiral supermultiplets, called messengers that
couple to the ultimate source of supersymmetry breaking and to
the SUSY particles. At colliders, assuming R-parity conserva-
tion [3], superpartners are produced in pairs (χ̃+

1 χ̃−
1 and χ̃±

1 χ̃0
2

production dominates in most cases) and decay to the standard
model particles and next-to-lightest SUSY particle (NLSP),
which can be either a neutralino or a slepton. In the former
case, which is considered in this note, the NLSP decays into
a photon and a gravitino (the lightest superpartner in GMSB
SUSY models, with mass less than ≈ 1 keV). The gravitino is
stable, and escapes detection, creating an apparent imbalance
in transverse momentum (/ET ) in the event. GMSB SUSY final
states are therefore characterized by two energetic photons and
large missing transverse momentum. The differences in event

mailto:gershtein@hep.fsu.edu
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kinematics between particular GMSB SUSY models result in
slightly different experimental sensitivities [4], and to obtain a
quantitative measure of limits on SUSY we consider a model
referred to as “Snowmass Slope SPS 8” [5]. This model has
only a single dimensioned parameter: an energy scale Λ that
determines the effective scale of SUSY breaking. The minimal
GMSB parameters correspond to a messenger mass Mm = 2Λ,
the number of messengers N5 = 1, the ratio of the vacuum ex-
pectation values of the two Higgs fields tanβ = 15, and the sign
of the Higgsino mass term μ > 0. The neutralino lifetime is not
defined within the model. For this analysis, it is assumed to be
sufficiently short to yield decays with prompt photons.

Searches for GMSB SUSY were carried out by collabora-
tions at the CERN LEP collider [6] and at the Fermilab Tevatron
collider in both Run I [7] and early in Run II [4,8]. The initial
limits from CDF and D0 for Run II, based on the SPS 8 model,
were combined [9] to yield Λ > 84.6 TeV corresponding to the
limit on the chargino mass of 209 GeV, at 95% confidence.
Complementary searches for GMSB SUSY with R-parity vi-
olation were performed by the H1 experiment at HERA [10].

This analysis is an update of that described in Ref. [4],
with about a factor of three more data and improved photon
identification based on: (i) an electromagnetic (EM) cluster
“pointing” algorithm that predicts the origin of a photon with
a resolution of about 2 cm along the beam axis, thereby elimi-
nating the largest instrumental background associated with mis-
reconstruction of the primary interaction vertex, and (ii) an im-
proved track veto requirement that suppresses sources of back-
ground with electrons in the final state. We also use an improved
likelihood fitter [11] to set limits on the scale parameter Λ.

The data in this analysis were recorded using single EM trig-
gers with the D0 detector [12], the main components of which
are an inner tracker, liquid-argon/uranium calorimeters, and a
muon spectrometer. The inner tracker consists of silicon mi-
crostrip and central scintillating-fiber trackers located in a 2 T
superconducting solenoidal magnet, providing measurements
up to pseudorapidities8 of |η| ≈ 3.0 and |η| ≈ 1.8, respectively.
The calorimeters are finely segmented and consist of a central
section (CC) covering |η| < 1.2 and two endcap calorimeters
extending coverage to |η| ≈ 4, all housed in separate cryostats
[13]. The electromagnetic section of the calorimeter has four
longitudinal layers and transverse segmentation of 0.1 × 0.1 in
η–φ space (where φ is the azimuthal angle), except in the third
layer, where it is 0.05×0.05. The central preshower (CPS) sys-
tem is placed between the solenoid and the calorimeter cryostat
and covers |η| � 1.2. The CPS provides precise measurement of
positions of EM showers. The axes of EM showers are recon-
structed by fitting straight lines to shower positions measured
in the four longitudinal calorimeter layers and the CPS (EM
“pointing”). The data for this study were collected between
2002 and summer 2006, using inclusive single EM triggers that
are almost 100% efficient to select signal data. The integrated
luminosity [14] of the sample is 1100 ± 70 pb−1.

8 Pseudorapidity is defined as − log(tan( θ
2 )), where θ is the angle between

the particle and the proton beam direction.
Photons and electrons are identified based on reconstructed
EM clusters using calorimetric information and further clas-
sified into electron and photon candidates, based on track-
ing information. The EM clusters are selected from calorime-
ter clusters using the simple cone method (of radius R =√

(�η)2 + (�φ)2 = 0.4) by requiring that (i) at least 90% of
the energy is deposited in the EM section of the calorime-
ter, (ii) the calorimeter isolation variable I = [Etot(0.4) −
EEM(0.2)]/EEM(0.2) is less than 0.07, where Etot(0.4) is the
total shower energy in a cone of radius R= 0.4, and EEM(0.2)

is the EM energy in a cone of radius R = 0.2, (iii) the trans-
verse, energy-weighted, width of the EM cluster in the third
EM calorimeter layer is smaller than 0.04 rad, and (iv) the
scalar sum of the transverse momenta (pT ) of all tracks origi-
nating from the primary vertex in an annulus of 0.05 <R< 0.4
around the cluster is less than 2 GeV. The isolation criteria are
tuned so that photons that convert in the tracker material are not
rejected. The EM cluster is further defined as an electron can-
didate if it is spatially matched to activity in the tracker, and
as a photon candidate otherwise. The tracker activity can be
either a reconstructed track or a density of hits in the silicon mi-
crostrip and central fiber trackers consistent with a track, i.e., an
electron. The latter requirement allows for increasing electron
track-matching efficiency, εtrk, measured in Z → ee data, from
(93.0 ± 0.1)% to (98.6 ± 0.1)% by identifying electrons with
lost tracks due to hard bremsstrahlung and/or inefficiency of the
inner trackers. This reduces electron backgrounds to photons by
a factor of five, while keeping the efficiency of anti-track activ-
ity requirement high. We measure that (91 ± 3)% of photon
candidates in Z → eeγ data satisfy the anti-track activity re-
quirement.

Jets are reconstructed using the iterative, midpoint cone al-
gorithm [15] with a cone size of R = 0.5. The missing trans-
verse energy is determined from the energy deposited in the
calorimeter for |η| < 4 and is corrected for the EM and jet en-
ergy scales.

We select γ γ candidates by requiring events to have two
photon candidates, each with transverse energy ET > 25 GeV
identified in the CC with |η| < 1.1. We require that at least
one of the photon candidates be matched to a CPS cluster,
and that the primary vertex be consistent with that of the pho-
ton candidate (obtained from the EM pointing). The accuracy
of the determination of the photon vertex is measured using
photons from final state radiation in Z → eeγ data sample
and found to be 2.3 ± 0.3 cm. The requirement of consistency
between the photon and primary vertices ensures correct cal-
culation of the transverse energies and tracking isolation re-
quirements. The accuracy of primary vertex association is stud-
ied in GMSB SUSY Monte Carlo simulated events, where the
primary vertex is identified correctly in (98.5 ± 0.1)% of the
events while the photon vertex matches the primary vertex in
(95.8 ± 0.1)%.

To reduce potential bias in the measurement of /ET from mis-
measurement of jet transverse momentum, we also require that
the jet with the highest ET (if jets are present in the event) be
separated from the /ET in azimuth by no more than 2.5 radians.
This selection yields 2341 events (the γ γ sample).
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All instrumental backgrounds arise from standard model
processes, with either genuine /ET (Wγ , W + jet, and t t̄ pro-
duction) or without inherent /ET (direct photon, multi-jet, and
Z → ee production). All these backgrounds are measured us-
ing data.

The former source always has an electron in the final state
which is misidentified as a photon. The contribution of this
background to the /ET distribution in data can be estimated
using an eγ sample (selected by requiring an electron and a
photon candidate and using the same kinematical requirements
as for the γ γ sample) scaled by the probability of an electron–
photon misidentification which is measured using Z → ee data.
First, the /ET distribution in the eγ sample must be corrected for
the contribution from events with no real /ET . The contribution
from Drell–Yan events is taken into account by obtaining the
/ET distribution for the ee sample (selected by requiring two
electron candidates and applying the same kinematical require-
ments as for the γ γ sample) which is dominated by Drell–Yan
events. The Drell–Yan /ET distribution is further normalized to
the number of Z boson events in the eγ sample (the latter is
determined by fitting the eγ invariant mass spectrum to the Z

boson mass peak).
The contribution from the multi-jet processes is estimated

from a data sample (referred to as the QCD sample) selected
by requiring two EM clusters that (a) satisfy all the kinematic
selection used to select γ γ sample and (b) satisfy all the pho-
ton identification criteria but fail the shower shape requirement.
The /ET distribution in the QCD sample is normalized to the
number of the events in the eγ sample with /ET < 12 GeV
after subtraction of the Drell–Yan contribution as determined
above. The expected number of Wγ , W + jet, and t t̄ events
with /ET < 12 GeV is negligible.

After the Drell–Yan and multi-jet contributions to the eγ

sample are subtracted, the resulting /ET distribution is scaled by
(1 − εtrk)/εtrk, where εtrk is the efficiency of the track-matching
requirement to obtain the estimate of /ET distribution for the
background with genuine /ET .

The background from events with no inherent /ET is divided
into multi-jet events with two real isolated photons and events
where one or both photons are misidentified jets. Since the /ET

resolution for both sources is dominated by the photon energy
resolution, the /ET distributions for the two sources are very
similar. However, misidentified jets have a different energy re-
sponse compared with that of real photons which leads to a
slight difference in the shapes of the /ET distributions. For the
real di-photon events, the /ET is assumed to have the same shape
as that of the Drell–Yan events. For misidentified jets, the shape
of the /ET distribution is taken from the QCD sample. Relative
normalization of the two sources is obtained using a fit to the
/ET distribution in the γ γ sample. We check that the fit is not
sensitive to possible signal contribution, and cross-check with a
method that estimates the γ γ sample purity using the measured
shower shape in the CPS. The relative fraction of di-photons is
(60 ± 20)% and this uncertainty is propagated as a systematic
uncertainty for the limit setting. Absolute normalization of the
/ET distributions from both sources is determined so that the
number of events with /ET < 12 GeV matches that in the γ γ

sample.
The largest physics backgrounds are from Zγγ → ννγ γ

and Wγγ → �γ γ ν processes. Contributions from these back-
grounds are estimated as 0.15 ± 0.06 and 0.10 ± 0.04 events,
respectively, using COMPHEP [16] Monte Carlo simulation,
cross-checked with MADGRAPH [17]. The contribution of
these backgrounds to the /ET distribution is taken from Monte
Carlo simulation, with number of events normalized to the in-
tegrated luminosity of the data sample.

The /ET distribution for the γ γ sample, with contributions
from physics background (W/Z + γ γ ), and instrumental back-
ground with genuine /ET (processes with mis-identified elec-
trons) and no inherent /ET (γ γ and multi-jet) is given in Fig. 1.
We also illustrate the /ET distribution expected from GMSB
SUSY for two values of Λ. The number of observed events,
as well as expected background and signal from GMSB SUSY
for /ET > 30 GeV and > 60 GeV are given in Table 1.

Fig. 1. The /ET distribution in γ γ data with W/Z + γ γ background (hatched

histogram), instrumental background with no genuine /ET : γ γ (solid black
line) and multi-jet (filled histogram), and background from processes with gen-
uine /ET and a misidentified electron (cross-hatched histogram). The expected

/ET distributions if GMSB SUSY events were present are shown as dotted and
dashed lines.
Table 1
Numbers of background events from Wγ , W + jet, and t t̄ (Genuine /ET ), no inherent /ET (No /ET ), Zγγ → ννγ γ and Wγγ → �γ γ ν (Physics) processes;
the total number of expected background events; numbers of expected GMSB SUSY signal events for two values of Λ; and the observed numbers of events for
/ET > 30 GeV and 60 GeV. Errors are statistical and systematic combined

Background events Expected signal events Observed events

Genuine /ET No /ET Physics Total Λ = 75 TeV Λ = 90 TeV

/ET > 30 GeV 0.97 ± 0.12 9.62 ± 1.12 0.19 ± 0.07 10.8 ± 1.1 28.3 ± 4.2 8.7 ± 1.3 16
/ET > 60 GeV 0.11 ± 0.04 1.44 ± 0.43 0.08 ± 0.04 1.6 ± 0.4 18.1 ± 2.7 6.4 ± 1.0 3
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Table 2
Points on the GMSB Snowmass Slope model: neutralino and chargino masses,
cross sections predicted by PYTHIA, k-factors, and reconstruction efficiencies
with total uncertainty

Λ, TeV m
χ̃0

1
, GeV m

χ̃+
1

, GeV σLO, fb k-factor Efficiency

70 93.7 168.2 215 1.21 0.17 ± 0.03
75 101.0 182.3 148 1.20 0.18 ± 0.03
80 108.5 198.1 97.5 1.19 0.18 ± 0.03
85 115.8 212.0 65.4 1.18 0.19 ± 0.03
90 123.0 225.8 41.8 1.17 0.19 ± 0.03
95 130.2 239.7 29.5 1.16 0.20 ± 0.03

100 137.4 253.4 20.6 1.15 0.20 ± 0.03
105 144.5 267.0 14.4 1.14 0.18 ± 0.03
110 151.7 280.7 10.3 1.13 0.19 ± 0.03

The expected GMSB signal efficiency is estimated from
Monte Carlo simulation generated for several points on the
Snowmass Slope (see Table 2), covering the neutralino mass
range from 170 GeV to 280 GeV. Although χ̃+

1 χ̃−
1 and χ̃±

1 χ̃0
2

processes dominate, we consider all GMSB SUSY production
channels. We used ISAJET 7.58 [18] to determine SUSY in-
teraction eigenstate masses and couplings. PYTHIA 6.319
[19] is used to generate the events after determining the sparti-
cle masses, branching fractions and leading order (LO) produc-
tion cross sections using CTEQ6L1 parton distributions [20].
The generated events are processed through a full GEANT-
based [21] detector simulation and the same reconstruction
code as used for data. The LO signal cross sections are scaled
to match the next-to-leading order (NLO) prediction using
k-factor values (see Table 2), extracted from Ref. [22].

The systematic error on the expected number of signal events
comes from the uncertainties in photon identification efficiency
(10%), statistics in MC samples (5%), track veto requirement
(3%), and trigger efficiency (4%). These were obtained using
Z → e+e− and Z → e+e−γ decays in data and in MC simula-
tion. Variation of parton distribution functions and uncertainty
in the total integrated luminosity result in additional 4% and
6.1% errors in signal yield respectively. The total uncertainty
on the background is dominated by statistics.

As the observed number of events for all values of /ET is
in good agreement with the standard model prediction, we con-
clude that there is no evidence for GMSB SUSY in the data. We
set limits on the production cross section by utilizing a likeli-
hood fitter [11] that incorporates a log-likelihood ratio (LLR)
test statistic method. This method utilizes binned /ET distri-
butions rather than a single-bin (fully-integrated) value, and
therefore accounts for the shapes of the distributions, leading
to greater sensitivity. The value of the confidence level for the
signal CLs is defined as CLs = CLs+b/CLb , where CLs+b

and CLb are the confidence levels for the signal plus back-
ground hypothesis and the background-only (null) hypothesis,
respectively. These confidence levels are evaluated by integrat-
ing corresponding LLR distributions populated by simulating
outcomes via Poisson statistics. Systematic uncertainties are
treated as uncertainties on the expected numbers of signal and
background events, not the outcomes of the limit calculations.
The degrading effects of systematic uncertainties are reduced
Fig. 2. Predicted cross section for the Snowmass Slope model versus Λ. The
observed and expected 95% C.L. limits are shown in solid and dash-dotted
lines, respectively.

by introducing a maximum likelihood fit to the missing trans-
verse energy distribution. A separate fit is performed for both
the background-only and signal-plus-background hypotheses
for each data or pseudo-data distribution.

The limits are shown in Fig. 2 together with expected sig-
nal cross sections. The observed limits are statistically com-
patible with the expected limits. The observed upper limit on
the signal cross section is below the prediction of the Snow-
mass Slope model for Λ < 91.5 TeV, or in terms of gaugino
masses, mχ̃0

1
< 125 GeV and mχ̃+

1
< 229 GeV. These represent

the most stringent limits on this particular GMSB SUSY model
to date.
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