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A search for pair production of doubly-charged Higgs bosons via pp̄ → H++H−− + X →
µ+µ+µ−µ− + X at

√
s = 1.96 TeV has been performed. We use a dataset corresponding to an

integrated luminosity of about 1.1 fb−1 collected from April 19, 2002 to February 22, 2006 in Run
II by the D0 detector of the Fermilab Tevatron Collider. Final states with at least three muons are
considered. In the absence of a significant excess above the standard model background, 95% confi-
dence level mass limits of M(H±±

L ) > 150 GeV and M(H±±

R ) > 126.5 GeV are set, respectively, for
left-handed and right-handed doubly-charged Higgs bosons assuming a 100% branching ratio into
muons.
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I. INTRODUCTION

Doubly-charged Higgs bosons are predicted in many scenarios such as left-right symmetric models [1], Higgs triplet
models [2] and little Higgs models [3]. At the Fermilab Tevatron Collider, there are two major production mechanisms.
The first mechanism is pair production via pp̄ → Z/γ∗ +X → H++H−− +X . The leading-order diagram is shown in
Fig.1. The second mechanism is single production via WW fusion, pp̄ → W±W±+X → H±±+X . However, existing
phenomenological and theoretical constraints can be easily satisfied if the W ±W± → H±± coupling is vanishing or
very small [4]. Therefore, in this analysis only H++H−−+X production is considered. Depending on the H±± and H±

masses, the possible decay modes are H±± → W±W±, H±± → W±H±, H±± → H±H± and H±± → `±`±, where
H± are singly-charged Higgs bosons and `± are charged leptons (e, µ, τ).

Since the H++ coupling to W pairs is suppressed due to the requirement that ρ ≡ m2
W / cos2 θW m2

Z = 1 at tree
level, the dominant final states are expected to be like-sign lepton pairs. The possible decay modes are decays in
the e, µ and τ channel. Since these decays violate lepton flavor conservation, decay modes with mixed lepton flavor
are also possible. Left-handed and right-handed states are distinguished by their decays into left-handed leptons or
right-handed leptons.

FIG. 1: Leading-order diagram for the pair production of doubly-charged Higgs bosons in pp̄ collisions, where both Higgs
bosons decay into muons.

Next-to-leading order (NLO) H++H−− pair production cross sections are shown in Fig. 2. The pair production
cross section for left-handed doubly-charged Higgs bosons in the mass 100 < M(H±±) < 200 GeV is about a factor
two larger than for the right-handed states due to different couplings to the intermediate Z boson [5].

FIG. 2: a) NLO cross-sections and b) ratio of the NLO to LO cross-sections as a function of the mass of the doubly-charged
Higgs boson, M(H±±) [5].

Direct searches were performed by the OPAL, L3 and DELPHI collaborations at LEP in e+e− collisions. From
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e+e− → H++H−− → 4` searches at LEP, doubly-charged Higgs bosons with masses below about 100 GeV have been
excluded [6–8]. A previous search with 113 pb−1 data by the D0 collaboration in the µµ channel has excluded H++

L

below a mass of 118 GeV/c2 and H±±
R below a mass of 98.2 GeV/c2 [9]. With 240 pb−1 of pp̄ collision data collected

by the CDF II experiment a search for doubly-charged Higgs boson by the CDF collaboration in µµ channel has
excluded H±±

L below a mass of 136 GeV/c2 and H±±
R below a mass of 113 GeV/c2 [10].

The main components of the D0 Run II detector important to this analysis are described briefly. The main detector
systems include a magnetic central tracking system, a calorimeter and a muon detector [11].

The central tracking system consists of the silicon microstrip tracker (SMT) and the central fiber tracker (CFT)
surrounded by a 2 T solenoidal magnet. The SMT has six barrel detectors, each with a set of four layers arranged
axially around the beam pipe, and interspersed with 16 radial disks. The design is optimized for tracking and vertexing
capability at |η| < 3. The CFT consists of scintillating fibers mounted on eight concentric cylinders. The fibers are
constructed in ribbons each 128 fibers wide composed of two singlet layers. These singlet layers are formed into the
‘doublet’ layers which form the ribbon by placing the fiber of one of the singlet layers in the space between the fibers
of the other singlet layer. The light from the fibers is converted into electrical pulses by visible light photon counters
(VLPCs). They operate at temperatures from 6 to 15 Kelvin, which enables them to achieve a quantum efficiency
(Q.E.) value well over 80%.

The calorimeter is a liquid argon sampling calorimeter. It is comprised of a central calorimeter (CC) covering a
region up to a pseudo-rapidity of |η| ≈ 1.1 and two end calorimeters (EC) extending the coverage to |η| < 4.0. The
calorimeter is separated into an electromagnetic section (20 radiation lengths), a find hadronic layer and a coarse
hadronic layer.

Muon detector is composed of three main components: scintillators for triggering and cosmic rejection, a toroidal
magnet to allow for an independent muon momentum measurement, and drift tubes to measure hit positions [12].

II. DATA SAMPLE

This analysis is based on the complete RunIIa data set collected with the D0 detector at the Fermilab Tevatron
Collider from April 19, 2002 to February 22, 2006. Events are collected using all possible dimuon and single muon
triggers. After data quality requirements, the total integrated luminosity of the sample is approximately 1.1 fb−1.

III. MONTE CARLO SAMPLES

The standard model backgrounds and signal processes have been generated with pythia 6.323. The Z/γ → ll cross
section is calculated with CTEQ6L1 PDFs according to [13]. The tt̄ cross section is calculated at NNLO in [14] and
the WW , ZZ and WZ cross sections are calculated in [15] MCFM using CTEQ6L1 PDFs. All background Monte
Carlo samples and cross sections used in this analysis are shown in Table I.

Process Mass Range [GeV] σ×Br [pb]
Z/γ∗ + X → µµ + X 15 < M < 60 455 ± 16.8
Z/γ∗ + X → µµ + X 60 < M < 130 242 ± 8.2
Z/γ∗ + X → µµ + X 130 < M < 250 1.96 ± 0.6
Z/γ∗ + X → ττ + X 15 < M < 60 455 ± 16.8
Z/γ∗ + X → ττ + X 60 < M < 130 242 ± 8.2
Z/γ∗ + X → ττ + X 130 < M < 250 1.96 ± 0.6

tt̄ → bb``νν 0.70 ± 0.04
WW → 2` + 2ν 1.08
WZ → 3` + ν 0.11

ZZ → 4` or 2` + 2ν 0.07

TABLE I: Integrated luminosities corresponding to the number of generated events for all background Monte Carlo samples
and cross sections used in this analysis.

Simulated muons are corrected by the difference between data and MC in reconstruction and isolation efficiencies.
Trigger efficiency corrections are not applied to the Monte Carlo sample. Instead, the Monte Carlo samples are
normalized to the data using the Z bosons in the data between 60 GeV to 130 GeV after requiring the preselection
and isolation requirements (S1 and S2) which are defined in Section IV.
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IV. EVENT SELECTION

In the previous analysis [9], two like-sign muons were required as a final state. In this analysis we require a third
muon, which increases the sensitivity. The dominant backgrounds are real tri-muon events from WZ and ZZ decays
and contributions from Z → µµ and QCD background which is estimated from data.

Muons are selected using tracks in the central tracking detector in combination with patterns of hits in the wire
chambers and scintillators in the muon system.

S1 Events are required to have at least two muons which pass the following selections:

• transverse momentum pT > 15 GeV

• pseudorapidity |η| < 2.0

• matched to a track in the central tracker with at least five hits in the CFT layers and at least two hits in
the SMT layers.

This requirement reduces the charge mis-identification probability [16] as well as background from badly
reconstructed tracks.

• cosmic veto using timing criterion on the hits in the scintillator layers.

• invariant mass of at least one muon pair > 30 GeV

S2 To remove the QCD background coming mainly from muons originating from semi-leptonic b decays, isolation
criteria based on the calorimeter and tracking information are applied. The isolation criteria are defined as
follows. The sum of the transverse energies of the cells in a annular ring around the muon direction is required
to be

∑

cell,i

Ei
T < 2.5 GeV, for 0.1 < R < 0.4

where R =
√

∆φ2 + ∆η2. A similar condition is defined for the total transverse momentum of all tracks
excluding the one matched to the muon in a cone of radius 0.5 centered around the muon,

∑

tracks,i

pi
T < 2.5 GeV, for R < 0.5

S3 To reject background from Z → µ+µ− and QCD events, the angle ∆φ between at least two muons is required to
be less than 2.5 radians, since two muons from Z decays are mostly back-to-back. This requirement rejects, in
addition to Z → µ+µ− events, some of the remaining muons from the semi-leptonic decays of b quarks in jets
that were not removed by the isolation requirement S2.

S4 Require at least two muons which fulfilled S1, S2 and S3 in the event to be of like-sign charge. This requirement
is also used for the instrumental background calculations.

S5 Require a third muon. The third muon should satisfy the following selections:

• transverse momentum pT > 15 GeV

• pseudorapidity |η| < 2.0

• matched to a track in the central tracker without requirements on the number of SMT and CFT hits.

• cosmic veto using timing criterion on the hits in the scintillator layers.

• isolation requirement (S2)

V. QCD BACKGROUND

The QCD background contribution is estimated directly from the data. All estimations of the QCD background
are made after applying the preselection (S1). Differential distributions of QCD background are obtained by inverting
the isolation requirement (

∑

cell,i Ei
T ≥ 2.5 GeV and

∑

tracks,i pi
T ≥ 2.5 GeV ) for both muons. Nnon−iso

data is defined

as the number of the events in this selection: the number of events after preselection (S1) with the two muons
not fulfilling the isolation criteria. We extrapolate the QCD estimate from the non-isolated region to the isolated
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region of the phase space by applying a normalization factor fQCD. The number of like-sign QCD events N±±
QCD is

estimated from the excess of like-sign events N±±
data above the expected contribution N±±

MC from all standard model

backgrounds: N±±
QCD = N±±

data − N±±
MC . Here N±±

data and N±±
MC are defined as the number of data and MC events after

the preselection (S1) in like-sign sample (S4), respectively. The normalization factor fQCD for the QCD sample is
obtained by taking the ratio of the number of like-sign QCD events to the number of non-isolated events in the
like-sign sample (Nnon−iso,±±

data ) at the preselection level (S1). The normalization factor fQCD is defined as

fQCD =
N±±

data − N±±
MC

Nnon−iso,±±
data

=
N±±

QCD

Nnon−iso,±±
data

(1)

The QCD background contribution at preselection level (S1) before applying the like-sign requirement (S4) is

obtained by multiplying fQCD to the number of non-isolated events in the unlike-sign sample, Nnon−iso,±∓
data without

the like-sign requirement (S4):

N±∓
QCD = fQCD × Nnon−iso,±∓

data (2)

The isolation efficiency is obtained from the like-sign sample. Assuming that events remaining after subtracting
Monte Carlo from data are all QCD events, the isolation efficiency for QCD is defined as

εiso =
N iso,±±

data − N iso,±±
MC

N±±
data − N±±

MC

= (8.25 ± 0.7)% (3)

where N iso,±±
data and N iso,±±

MC are the number of data and MC events after the isolation requirement (S2) in like-sign
sample (S4), respectively.

To get an estimation of the QCD contribution after applying the isolation requirement (S2), the isolation efficiency
from QCD is multiplied to the QCD contribution. The number of events for this estimation is given in Table II.

TABLE II: The number of non-isolated and QCD events after each selection (S1 and S2). The first and second row correspond
to events without and with like-sign requirement, respectively. The number of events in the second and third columns is the
number of QCD events after preselection (S1) and isolation requirement (S2), respectively.

Selection Nnon−iso
data Nnon−iso

data × fQCD Nnon−iso
data × fQCD × εiso

= NQCD = N iso
QCD

without like-sign 3334 5244 423
with like-sign (S4) 1206 1902 157

VI. CHARGE MIS-IDENTIFICATION PROBABILITY

There are two sources that cause charge to be mis-identified. The first source of charge mis-identification is due to
the limited CFT acceptance at high η. Tracks in the region with CFT detector |η| > 1.63 have less than 16 CFT hits.
The fewer hits a muon has, the more the charge of the muon tends to be mis-identified. The second source is from
very high pT tracks. The uncertainty on the measured curvature and a possible residual mis-alignment can cause a
charge mis-identification.

Since the mis-identification of charge occurs mainly in Z → µµ and the resulting mis-measured muon typically has
high pT , the dimuon mass above 70 GeV is used to measure the charge mis-identification probability. This selection
also reduces the QCD background, since most QCD background events are peaked in the low mass range. The charge
mis-identification rate is obtained by dividing the number of events in the selection with like-sign requirement (S1,S2
and S4) by the number of events without like-sign requirement (S1 and S2). The charge mis-identification rate is
calculated for both data sample and Z → µµ MC. In case of the measurement in data, backgrounds are subtracted
from the data sample. The background includes all MC backgrounds and QCD contribution except Z → µµ MC.

The dimuon invariant mass distributions for like-sign and without like-sign requirement for data and MC are shown
in Fig.3. From these we compute
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FIG. 3: The dimuon invariant mass distribution for data (left) and Monte Carlo Z → µµ (right) events. The open and filled
histograms correspond to the cases without and with like-sign requirement, respectively.

P flip
data = ( 9.4 ± 1.3 ) × 10−4

P flip
MC = ( 3.90 ± 0.9 ) × 10−4.

The uncertainties are statistical.
Since the charge mis-identification rate in the Monte Carlo simulation is underestimated, the ratio of the probability

P flip
data from data to the P flip

Z→µµMC from Z → µµ MC is taken as a correction. The ratio kflip is defined as

kflip =
P flip

data

P flip
MC

= 2.41 ± 0.67

The ratio is applied only to the Z → µµ MC sample when estimating the like-sign contribution.

VII. COMPARISON OF DATA AND MONTE CARLO

The number of remaining events after each selection are shown in Table III. The distributions of dimuon invariant
mass and ∆φ are shown in Figs. 4–6. There is good agreement between data and the Monte Carlo simulation plus
QCD, both in normalization and shape.

The third muon does not have any requirements on the number of SMT and CFT hits. However, if the third
muon fulfills the CFT and SMT hit requirements in S1, then it is considered as a candidate muon in construction of a
like-sign dimuon. In the events with more than one pair of muons that fulfills each of the selections, the invariant mass
and ∆φ between two muons are calculated only for the pair which has the muons with highest transverse momentum.

When the muons are required to be of like-sign charge most of the background from Z → µµ are removed. The
number of remaining events after each selection with like-sign requirement are shown in Table IV. This shows that
the like-sign backgrounds are well understood.

In Figs. 4–6, the distribution of a left-handed doubly-charged Higgs signal with a mass M(H±±) = 140GeV are
shown, with the normalization given by the NLO cross section, taking into account the experimental efficiencies. The
number of expected signal events after each selection is shown in Table V for different masses. Total signal efficiencies
lie in the range 30%- 35%, and are nearly independent of mass.
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A. High mass region

This study includes the region of dimuon invariant mass Mµµ > 200 GeV. In the dimuon invariant mass plots
(Fig. 4) a discrepancy is observed in this region.

The plots in Fig.7 indicates the following properties achieved in this region. It is well known that the mis-identified
tracks are typically assigned much higher transverse momenta than the pT it has been generated with. The leading
muon is more vulnerable to mis-reconstruction than the second muon for the uncertainty on the measured curvature.
Therefore the leading muon pT has an excess over the high pT region. A mis-reconstructed leading muon generates
large missing ET in the opposite direction of leading muon. Since the pT of the second muon peaks around 40 GeV,
it is conceivable to conclude that this discrepancy may be arising from Z decays where one of the decay muons is
reconstructed badly.

To check this hypothesis, a further investigation is made by adjusting the leading pT such that the missing ET is 0
GeV. The leading pT is modified by subtracting missing ET since most of missing ET comes from leading muon pT .
When the adjusted pT is used to reconstruct an invariant mass, a peak at the Z mass is clearly observed as shown in
Fig. 8.

Note that this effect in the data is not taken into account completely for the unlike-sign sample, while for the
like-sign sample, it is taken into account by the charge mis-identification rate correction factor.

The ∆φ requirement (S3) has been designed to remove such remaining Z boson decays responsible for the observed
discrepancy.

TABLE III: The expected number of Monte Carlo background and QCD events and number of observed events after each
selection. The simulation of Z decays includes the Drell-Yan contribution. Only statistical uncertainties are given in the Table.

Selection Preselection Isolation ∆φ < 2.5 Like sign Third muon
S1 S2 S3 S4 S5

Signal (140 GeV) 20.7 18.7 16.4 11.8 10.2
Z → µµ 69236 58325 4942 9.2 0.5±0.4
QCD 5244 423 40.5 14.2 0.5±0.2

Z → ττ 328 269 20.0 < 0.01 < 0.01
tt̄ 38 20 14 0.03 < 0.01

WW 40 34 20 < 0.01 < 0.01
WZ 19 16 11 3.0 1.6±0.03
ZZ 11 9 5 0.6 0.5±0.01

Total background 74917±123 59096±111 5052±33 27±1.7 3.1±0.5
Data 74086 59347 4623 35 3

S/
√

S + B 0.08 0.08 0.23 1.89 2.79

TABLE IV: The expected number of events due to Monte Carlo backgrounds and QCD and number of observed events after
each selection with like-sign requirement.

Selection Preselection Isolation ∆φ < 2.5
(Like-sign) S4 & S1 S2 S3

Signal (140 GeV) 16.6 13.5 11.8
Z → µµ 115 59 9.2±1
QCD 1902 157 14.2±1

Z → ττ 3 0.2 < 0.01
tt̄ 7 0.04 0.03±0.01

WW 0.08 0.04 < 0.01
WZ 5.2 4.3 3.0±0.04
ZZ 1.1 0.9 0.6±0.02

Total background 2033 221 27±1.7
Data 1966 187 35
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TABLE V: The number of expected signal events after each selection and efficiency for each mass point. The first row gives the
number of expected events using the NLO cross section for left-handed H±± boson. The simulation is done in 10 GeV mass
steps, but only every second mass point starting from 100 GeV is shown. The uncertainty of 1% is statistical.

M (GeV) 100 120 140 160 180 200
N = σL 128 60 30 16 9 5

S1 87 40 21 11 6 3
S2 78 36 19 10 5 3
S3 67 32 16 9 6 3
S4 49 23 12 6 3 2
S5 42 20 10 5 3 2

ε (±1%) 33% 33% 34% 34% 33% 32%

VIII. CANDIDATE EVENTS

The run and event numbers as well as the invariant mass combinations between all muons in these events are given
in Table VI and the kinematic properties of the individual muons in Table VII.

The largest remaining background after the third muon requirement is WZ background with 1.6 events. The
contribution from Z → µµ is 0.5 events. The expected QCD contribution is 0.5 events. Event (1) has large missing
ET . One muon from this event has no SMT hit. This muon could be mis-identified so that the pT of the muon is
changed. This event is therefore consistent with being a WZ event. Event (2) contains another not selected muon
with a pT of 12 GeV. This muon could come from a ZZ event. Event (3) has a muon which has η > 1.6. This could
be the case of flipping charge from Z → µµ+jets.

Run Event M(µ1µ2) M(µ1µ3) M(µ2µ3) Missing ET

(1) 175666 1137583 260.353 (−+) 205.602 (−−) 144.15 (+−) 138.20 GeV
(2) 203564 14775029 103.199 (+−) 86.3628 (+−) 67.1431 (−−) 10.52 GeV
(3) 205114 3409480 124.463 (+−) 24.6714 (+−) 50.4876 (−−) 43.72 GeV

TABLE VI: Run, event number and invariant masses of the three possible pairings of selected muons for the candidate events.
Muons are numbered in descending pT order. The charges of the muons are given in parentheses.

Muon Charge pT (GeV) η φ NSMT NCFT Quality
Event (1) Run 175666 event 1137583

µ1 -1 241.0 0.07 2.11 8 16 tight
µ2 +1 40.0 -1.52 5.30 0 16 tight
µ3 -1 31.9 1.37 4.59 3 16 tight

Event (2) Run 203564 event 14775029
µ1 +1 40.3 0.23 2.16 4 16 tight
µ2 -1 39.7 -1.51 4.45 8 16 tight
µ3 -1 35.7 -1.38 0.35 8 14 tight

Event (3) Run 205114 event 3409480
µ1 +1 36.9 -1.54 1.77 10 15 tight
µ2 -1 17.2 1.61 5.99 8 15 tight
µ3 -1 15.5 -0.57 1.55 8 16 tight

TABLE VII: Transverse momentum pT , charge, pseudorapidity η, azimuthal angle φ and number of SMT and CFT hits for all
muons in the candidate events. Event (2) contains another not selected tight muon which has momentum of 12.3 GeV.

IX. SYSTEMATIC UNCERTAINTIES

The following systematic uncertainties on signal and background are taken into account in the limit calculation. The
systematic uncertainty on the luminosity is estimated to be 6.1% [17]. The systematic uncertainties on muon identifi-
cation correction for backgrounds and signal are 2% and 6% respectively. The systematic error on the normalization
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FIG. 4: Distribution of the dimuon invariant mass and ∆φ between the two muons for data compared to the sum of Monte
Carlo backgrounds after the preselection (S1) in upper plots and the ∆φ requirement (S1-S3) in lower plots. Di-muon invariant
mass and ∆φ are calculated for the two highest pT muons, independent of their charge. The signal expected for a left-handed
H±± , with M(H±±) = 140 GeV/c2, is also shown by the open histogram.

using NNLO Monte Carlo background production cross sections is taken to be 5%. The theoretical uncertainty on the
NLO H±± production cross section is about 10% [5]. The PDF uncertainties are less than 4%. The 27% uncertainty
on the kflip ratio applied to like-sign Z → µµ is included. The uncertainty of 9% on the QCD isolation efficiency is
also taken into account.
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FIG. 5: Distribution of the dimuon invariant mass and ∆φ between the two muons for data compared to the sum of Monte
Carlo backgrounds after the preselection(S1) with the like-sign requirement(S4).
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FIG. 6: Distribution of the dimuon invariant mass and ∆φ between the two muons for data compared to the sum of Monte
Carlo backgrounds after the third muon requirement (S1-S5).

X. RESULT

A search for pp̄ → H++H−− + X → µ+µ+µ−µ− + X has been performed. After full selection three data events
remain, in good agreement with the standard model background expectation of 3.1 ± 0.5 events. Since no excess is
observed, we proceed to set limits on the production cross-section times branching fraction using the CLS method [18].
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FIG. 7: (a) The excess of leading muon in the high pT region in like- and unlike-sign dimuon data, (b) large missing ET , (c)
the direction between missing ET and leading muon and (d) second muon peak around 40 GeV at Preselection level (S1) in
the region of Mµµ > 200 GeV.

We use the dimuon invariant mass distributions to calculate the confidence level. Statistical and systematic errors are
considered. The limit calculation is performed using TLimit which has been adapted from the programs mclimit [19].
The cross section limit as a function of the dimuon invariant mass is shown in Fig.9 together with the cross section
of left- and right-handed doubly charged Higgs bosons from theory. At CLS=95% a mass limit of 150 GeV for left-
handed and a mass limit of 126.5 GeV for right-handed doubly-charged Higgs bosons is obtained. This significantly
extends the current mass limits of M(H±±

L ) > 136 GeV for left-handed doubly-charged Higgs boson from the CDF
collaboration.
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