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A sample of γ+3 jet events collected in the D0 experiment with an integrated luminosity of 1 fb−1

is used to determine the fraction of the events with double parton (DP) scattering, fDP in a single
pp̄ collision at

√
s = 1.96 TeV. The events are selected with photon candidate transverse momentum

pγ

T within 60 ≤ pγ

T ≤ 80 GeV, leading jet pT > 25 GeV and two additional jets with pT > 15
GeV. The values of fDP are measured in three intervals of the second jet transverse momentum
pjet2

T which spans the range of 15 ≤ pjet2
T ≤ 30 GeV. We found that the fDP fractions drop with

increasing pjet2
T . In the same three pjet2

T intervals, we also calculate an effective cross section σeff ,
a process-independent parameter which contains information about the parton density inside the
proton and represents possible parton correlations. The value obtained from averaging over the
three pjet2

T intervals is σaver.
eff = 15.1 ± 1.9 mb.
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I. INTRODUCTION

Many features of high energy inelastic hadron collisions depend directly on the parton structure of hadrons which
is still not yet well understood at both the theoretical and experimental levels. Phenomenologically, the proton (or
antiproton) may be viewed, as an object composed of three light quarks (or anti-quarks). The study of this structure
is founded mainly on the use of a simplified theoretical model which considers high energy inelastic scattering of
nucleons as a process involving a single collision of one quark or gluon from one nucleon with one quark or gluon from
the other nucleon. In this approach, the additional “spectator” partons do not take part in the hard 2 → 2 parton
collision and form the so called “underlying event”.

Another, much less developed, approach is based on models in which there might be more than one hard interaction
of parton pairs in one collision between nucleons. Since each incoming hadron is a composite object, consisting of
many partons, such a probability should be non-zero. Models with multiple parton collisions have been considered
in a few theoretical papers [1–7]. It is obvious that the rate of events with double parton scattering (DPS) depends
on how the partons are distributed within the nucleon. The form of the parton spatial distribution and possible
related correlations between partons are practically unknown. This information is hard to obtain within the present
theoretical models based on perturbative QCD and makes a relevant measurement particularly important.

To date there have been only four dedicated measurements studying double parton scattering: the AFS experiment
in pp collisions at

√
s = 63 GeV [8], UA2 in pp̄ collisions at

√
s = 630 GeV [9] and twice by CDF in pp̄ collisions

at
√

s = 1.8 TeV [10, 11]. The four-jet final state has been used in the first three measurements and the γ + 3 jets
final state in the last CDF one to extract values of σeff and σDPS (or fDP fractions). The obtained values of σeff by
those experiments are σeff ∼ 5 mb (AFS), σeff >8.3 mb at 95% C.L. (UA2), σeff = 12.1+10.7

−5.4 mb (CDF, four-jet) and

σeff = 14.1± 1.7+1.7
−2.3 mb (CDF, γ + 3 jets).

In the present analysis, we analyse a sample of photon candidate with at least 3 jets events (refered below as
“γ + 3 jets” events) collected by the D0 experiment during Run IIa with an integrated luminosity of 1 fb−1 in pp̄
collisions at

√
s = 1.96 TeV to determine the fraction of the double parton interaction in a single pp̄ collision and also

the value of σeff . The latter allows, given the γ + jets σγj and dijet σjj cross sections, the calculation of the σDPS

cross section as:

σDPS ≡ σγjσjj

σeff

(1)

Here the normalization factor σeff is a parameter that can be directly related to the distance between partons in the
nucleon [2, 3, 5, 6, 8–11]. If the partons are uniformly distributed inside the nucleon (large σeff), σDPS will be rather
low and, conversely, it should grow for a highly concentrated parton spatial densities (small σeff). A more precise
energy measurement of photons as compared to jets helps in separating the DP scatterings and allows us to better
fix the scale of the main hard interaction.

In some of the previous analyses with 4-jet final state [8–10], σeff has been calculated from the measured σDPS

cross section using QCD predictions for the two dijet cross sections in Eq. (1). A new technique for extracting σeff

was proposed in [11]. It operates only with quantities determined from data analysis and minimizes the theoretical
assumptions that were used in the previous 4-jet measurements. In the current analysis, we follow this method and
extract σeff without any theoretical predictions on the γ + jets and dijets cross sections, by comparing the number
of observed DP γ + 3 jets events to the number of γ + 3 jets events with hard interactions occurring in two separate
pp̄ collisions. The latter class of events will be called double interactions (DI). Assuming independent (uncorrelated)
scatterings in the DP process [3, 4], the DP and DI events should be kinematically identical.

The assumption that the additional interaction in the DP events can be considered as independent from the main
hard interaction was tested using pythia [12]. In that case, the regular dijet events should describe very well kinematic
properties of the second interaction in the DP events. A telling illustration of the independence of the DP interactions
could be the pT and η distributions of the dijet events produced in the γ + 3 jets DP and regular dijet events. As a
model for the DP events, we simulated γ + 3 jets events without initial and final state radiation but with the MPI
model (tune A-CR) turned on 1. This should guarantee that the jets produced in addition to the leading jet in the
γ + 3 jets system are caused by just additional interactions. The regular dijets events were generated without initial

1 Tune A-CR is usually considered as an example of a model with strong color reconnections and usually give “extreme” predictions for
track multiplicities and/or average hadron pT (see http://home.fnal.gov/∼mskands/leshouches-plots/ and also, for example, Fig. 2 from
hep-ph arXiv:0807.3248. )
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FIG. 1: Difference between the pT spectra of the second jet in γ + jets events (black circles) and the first jet in the dijet events
(red triangles), generated with “tune A-CR” MPI model.

and final state radiation as well, using tune A-CR for the MPI model. The left plot in Fig. 1 compares the pT spectra
of the first jet from DP interaction (second jet in γ + jets events, black circles) and the first jet in the dijet events
(red triangles) while right plot compares the η distributions of these jets. We can see a good agreement between
kinematics of the second parton interaction and regular dijet events. The same comparison has been done using tunes
A and S0 with similar good agreement. Another convincing test of this topic is discussed in the Section V (see the
text to Fig. 7).

It was found that single [13] and double [14] diffraction events may give just about 1% contribution to the total dijet
production with jet pT & 15 GeV. This means that γ + jets and dijet events can be produced as a result of inelastic
non-diffractive (hard) pp̄ interaction. Then, if we have a pp̄ beam crossing with two hard collisions, the probability
for a DI event in that crossing is PDI = 2 (σγj/σhard)(σ

jj/σhard). Here σjj/σhard (or σγj/σhard) is a probability to
produce a dijet (or γ + jets) event as a separate hard processes. The factor of two takes into account the fact that
the two scatterings, producing γ + jets and dijet events, can be ordered in two ways with respect to the two collision
vertices. The number of DI events (to first order) can be obtained from PDI, being corrected by the acceptance ADI,
the event selection efficiency εDI, the 2-vertex selection efficiency ε2vtx, and also multiplied by the number of beam
crossings with 2 hard collisions Nc(2):

NDI = 2
σγj

σhard

σjj

σhard

Nc(2) ADI εDI ε2vtx. (2)

Analogously to PDI, the probability for DP events PDP, given a beam crossing with one hard collision, is PDP =
σDPS/σhard = (σγj/σeff)(σjj/σhard) where we used Eq. (1). Then the number of DP events can be expressed from
PDP with a correction for the acceptance ADP, the event selection efficiency εDP, the 1-vertex selection efficiency ε1vtx,
and multiplied by the number of beam crossings with 1 hard collision Nc(1):

NDP =
σγj

σeff

σjj

σhard

Nc(1) ADP εDP ε1vtx. (3)

The ratio of NDP to NDI allows us to obtain the expression for σeff in the following form:

σeff =
NDI

NDP

Nc(1)

2Nc(2)

ADP

ADI

εDP

εDI

ε1vtx

ε2vtx

σhard. (4)

It is worth noting that the σγj and σjj cross sections are reduced in this ratio and that all the remaining efficiencies
and acceptances for DP and DI events enter only as ratios.

The main background for the DP events is caused by the γ+3 jets resulting from single parton (SP) scatterings with
hard gluon radiation in the initial or final state qg → qγgg or qq̄ → gγgg. The fraction of DP events is determined
in this analysis using a set of variables sensitive to the kinematic configurations of the two independent scatterings of
parton pairs (see Sections IV and V).
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II. OBJECT IDENTIFICATION

Photon candidates were identified in the DØ detector [15] as isolated clusters of energy depositions in the uranium
and liquid-argon sampling calorimeter. The electromagnetic (EM) section of the calorimeter is segmented longi-
tudinally into four layers and transversely into cells in pseudorapidity and azimuthal angle ∆η × ∆φ = 0.1 × 0.1
(0.05× 0.05 in the third layer of the EM calorimeter). In addition, the cluster may also contain the energy deposited
in the hadronic portion of the calorimeter located behind the EM section.

The triggers used in this analysis identify clusters of large electromagnetic energy in events and are based on the
photon pT and loosely on the photon shower shape. These triggers are ∼ 97 % efficient at pγ

T ' 30 GeV and are more
than 99% efficient at pγ

T > 35 GeV.
To select photon candidates in our data samples, we have used the following criteria [16, 17]. EM objects are

reconstructed using a simple cone algorithm with a cone size R =
√

(∆η)2 + (∆φ)2 = 0.2. Central (|ηγ | < 1) and
forward (1.5 < |ηγ | < 2.5) photons are considered with 60 < pγ

T < 80 GeV. To avoid inter-calorimeter boundaries
and cracks, EM η and φ fiducial cuts are applied. Each photon candidate was required to deposit more than 96% of
the detected energy in the EM section of the calorimeter (EMfrac > 0.96) and to be isolated in the angular region
between R = 0.2 and R = 0.4 around the gravity center of the cluster: Iso(∆R02) < 0.07. Here Iso(∆R02) =
(Eiso

Tot − Eiso
Core)/Eiso

Core, where Eiso
Tot is overall (EM+hadronic) tower energy in the (η, φ) circle of radius R = 0.4 and

Eiso
Core is EM tower energy within a radius of R = 0.2. The probability to have any track spatially matched to the

EM cluster in the event was required to be below 0.001. We also require the energy-weighted EM cluster width in
the finely-segmented EM3 layer to be consistent with that expected for an electromagnetic shower. In addition to
the calorimeter isolation, we also apply a track isolation cut, specifically we require the scalar sum of track transverse
momenta (ptrk

T ) in the ring of 0.05 ≤ R ≤ 0.4 to be less than 1.5 GeV. Only tracks with ptrk
T > 0.4 GeV are considered.

We also require each event to have at least three jets which are reconstructed using the DØ Run II iterative midpoint
cone algorithm [18] with a cone size R = 0.7. We consider all the jets in the event reconstructed within |η| < 3.5 and

require the leading (in pT ) jet to have pjet
T > 25 GeV, while the next-to-leading jet (“2nd jet”) and 3rd jet should

have pT > 15 GeV.

III. DATA SAMPLES

We used the data collected with the D0 detector during Run IIa, which after applying all the data quality criteria
and the trigger selections, corresponds to an integrated luminosity of about 1.02 ± 0.06 fb−1. The EM triggers used in
this analysis identify clusters of large electromagnetic energy in events and are based on the photon pT and loosely on
the photon shower shape. These triggers are 100% efficient at pγ

T ' 60 GeV. We consider the following data samples
in this analysis.

To determine the fraction of DP events, we select the sample of γ + 3 jets events with the requirement of only one
event vertex (“1VTX” sample). The event vertex should have at least three associated tracks and the distance to the
center of the detector along the beam axis should be |zvtx| < 60 cm. To estimate the fraction of DI events, we also
need an additional γ + 3 jets event data sample that differs from the 1VTX sample only by the requirement of two
pp̄ vertices (“2VTX sample”), each of which should satisfy the same vertex selection criteria as for the 1VTX sample.
In both samples, there should be at least one photon candidate and at least 3 jets with criteria described in Section
II. Any pair of objects (photon and jets) must be separated in the η − φ space by ∆R(η, φ) > 0.5 to avoid photon
and/or jets overlapping. To suppress background from W → eν events and cosmics, the missing transverse energy in
the event is required to fulfill Emiss

T < 0.7 pγ
T .

We use two models for DP and DI events which are obtained by combining pairs of real events. For the DP model,
we mixed 1VTX γ+ ≥ 1 jet events and 1VTX minimum bias (MB) events with ≥ 1 jets. The resulting mixed events
with jets re-ordered in pT are also required to have at least one photon candidate and at least three jets with the
criteria described above. As we see, the built DP model (called mixdp) [11] assumes independent scatterings of γ+jets
and dijet events by construction.

To build the DI model we exploit the fact that the jets in this sample should originate from separate pp̄ collisions.
This condition is satisfied by preparing a mixture of γ+ ≥ 1 jet events from the 2VTX γ + jets data with the 2VTX
MB events with ≥ 1 jets. In case of ≥ 2 jets in the MB component of the mixture, the jets are required to originate
from the same vertex using the jet tracks information. Similarly to mixdp, in the mixed events, the jets are re-ordered
in pT and required to pass the γ + 3 jets event selection. We will call this model mixdi. As a background to the DI
events, we also consider the 2VTX γ + 3 jets sample without a hard interaction in the second vertex (bkg2vtx). It
was obtained by a direct requirement that all three jets originate from the same vertex using the jet tracks information.

It is worth emphasizing that mixdp and mixdi samples differ only by the size of “underlying event” energy that
comes from soft interactions in either one or two pp̄ collisions. This energy contributes to the jet and photon ID cones
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and may change their reconstruction efficiencies. We correct for this difference by calculating εDI and εDP efficiencies
in Eq. (1).

In this analysis, we estimate the fractions of DP events and then σeff in the three pT intervals of the second jet
(pjet2

T ), 15–20, 20–25 and 25–30 GeV. All possible event configurations with the γ + 3 jets final state in a single pp̄
collision are shown in Fig. 2. The upper diagram (a) shows SP production with a single hard scattering. The bottom
diagrams are the signal DP events which may be classified into three types according to the origin of jets. The plot
(b) illustrates DP scattering with γ +1 jet production overlaid with dijet production (Type I). Diagram (c) shows DP
scattering with γ + 2 jet production overlaid with dijet production, in which one of the two jets is lost due to jet pT

threshold or finite jet finding efficiency or detector acceptance (Type II). The fraction of the Type I (II) events vary

from 23% (75%) at 15<pjet2
T <20 GeV to 14% (86%) at 25<pjet2

T <30 GeV. We also distinguish Type III (diagram
(d)) that contains the configuration where a jet from the second interaction becomes the leading jet of the final 3-jets
system. This configuration is quite rare and its fraction does not exceed 2%.

Analogous possible event configurations with the γ +3 jets final state produced in events with two pp̄ collisions are
shown in Fig. 3. Plot (a) shows SP production with a hard pp̄ collision in one vertex and a soft pp̄ collision in the
second vertex. The three bottom diagrams show DI production, which can be classified into the three types similarly
to the DP ones with about the same fractions in the pjet2

T bins as for DP events.

IV. DISCRIMINATING VARIABLES

A distinctive feature of the DP events is the presence of two independent parton-parton scatterings within the same
pp̄ collision. To isolate these events in data, we used a collection of variables sensitive to the kinematics of the DP
events, specifically to the difference between the pT imbalances of two pairs in γ + 3 jets events:

SpT
=

1√
2

√

( |~pT (γ, i)|
δpT (γ, i)

)2

+

( |~pT (j, k)|
δpT (j, k)

)2

(5)
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=
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2

√

√

√

√

√
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T | +
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∣

∣
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∣
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(6)

Sφ =
1√
2

√

(

∆φ(γ, i)

δφ(γ, i)

)2

+

(

∆φ(j, k)

δφ(j, k)

)2

(7)

Variables SpT
, Sp′

T
have also been used earlier [9–11], while Sφ is a new one first introduced in this analysis. In

the equations above, ~pT (γ, i) and ~pT (j, k) are the pT vectors of the total transverse momenta of the two two-body
systems, ∆φ(γ, i) and ∆φ(j, k) are the azimuthal angles between them and δpT (γ, i), δpT (j, k), δφ(γ, i), δφ(j, k) are
the corresponding uncertainties. Here uncertainty is RMS of distribution of the related quantity for the signal MIXDP
sample. The pairs are constructed by grouping γ with 3 jets in three possible configurations: (γ+jet1) ⊕ (jet2+jet3),
(γ + jet2) ⊕ (jet1 + jet3), and (γ + jet3) ⊕ (jet1 + jet2). The configuration that gives the minimum S is selected
for each of the S-family variables. In most events (95-97% in mixdp sample), S is minimized by pairing the photon
with the leading jet, while the additional jets both come from dijet system (Type I) or one of them is replaced by the
radiation jet (Type II).

The ∆S-family variables ∆SpT
, ∆Sp′

T
, and ∆Sφ are allied to the S-family. They are defined as an azimuthal angle

between the pT vectors of the pairs, (γ + jeti) and (jetj + jetk), that give the minimum S:

∆S = ∆φ
(

p
γ,jeti

T , p
jetj ,jetk

T

)

(8)

Fig. 4 illustrates a possible disposition of the transverse momenta vectors of the photon and jets as well as their pT

imbalances vectors, p
1
T and p

2
T, in γ + 3 jets events.
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FIG. 2: Diagrams of the γ + 3 jets final state in a single pp̄ collision. (a) SP production with a single hard scattering; (b) DP
scattering with γ + 1 jet production overlaid with dijet production; (c) DP scattering with γ + 2 jet production overlaid with
dijet production, in which one of the two jets is lost; (d) DP scattering with γ +1 jet production overlaid with dijet production
where dijet becomes the leading jet of the final 3-jet system.

SP

DI Type I DI Type II DI Type III

γ
T

p

jet3

T
p

jet2

T
p

jet1

T
p

jet1

T
p jet1

T
p

jet1

T
pγ

T
pγ

T
p

γ
T

p

jet3

T
p

jet3

T
p

jet3

T
p

jet2

T
p

jet2

T
p

jet2

T
p

(a)

(b) (c) (d)

FIG. 3: Diagrams of the γ + 3 jets final state produced in events with two pp̄ collisions. (a) SP production in one pp̄ collision
(vertex) together with an inelastic but soft second collision (vertex); (b) DI production with γ + 1 jet produced in one collision
and dijet produced in the second; (c) DI production with γ + 2 jets from one collision and with dijets in the second, but one
of the two jets is lost; (d) DI production with γ + 1 jet produced in one collision and dijets produced in the second where dijet
becomes the leading jet of the final 3-jet system.
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V. FRACTIONS OF DP AND DI EVENTS.

A. Fraction of DP events.

The fraction of the DP events (fDP ) is used for the σeff calculation in (4). To extract this quantity, we use a data
driven method and compare distinguishing variables for two sets of the γ + 3 jets 1VTX data, one of which should
contain a larger fraction of the signal events than the other. Since the jet cross section produced in the dijet events
drops faster than that of the radiation jets [1, 3], we should expect higher fDP fractions for smaller pjet2

T values.

Taking into account two adjacent intervals we can get DP-enriched (e.g. 15<pjet2
T <20 GeV) and DP-depleted (e.g.

20<pjet2
T <25 GeV) samples.

The distribution for each of the distinguishing variable in data can be expressed as a sum of signal (DP) and
background (SP) distributions. In particular, for any ∆S-family variable a distribution in data (D) can be expressed as
a superposition of mixdp (M) and background (B) distributions: D1 = f1M1+(1−f1)B1 and D2 = f2M2+(1−f2)B2,
where f is a fraction of the DP events, (1 − f) is a fraction of the SP events, and indices 1 and 2 correspond to the
DP-rich and DP-poor data sets. After some transformations we obtain:

D1 − λKD2 = f1M1 − λKCf1M2 (9)

where λ = B1/B2 is a ratio of the background distributions, K = (1 − f1)/(1 − f2) is an expected ratio of the SP
fractions in the DP-rich and DP-poor samples and C = f2/f1 is a ratio of the DP fractions in these samples.

The factor λ is extracted as a ratio of ∆S distributions obtained from the SP background samples in the adjacent
pjet2

T intervals. We have used γ + jets MC events generated with pythia v6.4 with p̂ min
⊥

= 40 GeV with the same
events selections as for the 1VTX data. We have found that SP events are mostly (& 90% of events) concentrated in
the region with ∆S > 2.0 and have very similar ∆S shapes for which λ is about unity. Difference in the shapes is
more or less noticeable for events with ∆S < 1.5 with λ varying between 1.1 – 1.3 but here expected fractions of SP
events are just 2–4%.

Parameter C is defined here as C ≡ f2/f1 =
(

NDP
2 /NDATA

2

) (

NDATA
1 /NDP

1

)

and in particular requires one to

determine the ratio NDP
2 /NDP

1 . The behavior of dijets in events with a single interaction is supposed to be identical to
the behavior of dijets in the second hard (DP) interaction (see Section I and Fig. 1). Now, assuming the mixdp sample
correctly models the properties of the DP events, the unknown ratio of the DP events in data can be substituted by
the known one from the mixdp sample: C =

(

NMIXDP
2 /NDATA

2

) (

NDATA
1 /NMIXDP

1

)

. Thus, parameter C can be
determined without knowledge of the actual amount of DP events in data. We found that C = 0.694 ± 0.020 and
0.701± 0.019 for combination of pjet2

T bins 15 − 20/20− 25 GeV and 20− 25/25− 30 GeV, respectively.
For extracting the DP fraction in data, we make a χ2 minimization using minuit [19] of this functional form

F = |D1 − f1M1 − λK(D2 − Cf1M2)|/σ (10)

for a given distinguishing variable. Parameter σ contains uncertainties on C, D1, D2, M1, M2 and λ. The only free
parameter obtained from the minimization is f1. The fit was performed for each pair of pjet2

T bins (15 − 20/20− 25
GeV and 20 − 25/25− 30 GeV) and for each ∆S-family variable. The extracted values of DP fractions are shown in

Fig. 5. The DP fractions in the last bin 25 < pjet2
T < 30 are calculated as f2 = Cf1. We have studied uncertainties

on the fDP fractions by varying λ by 2σ from its central value and found them to be about just 2 − 3%. Additional
uncertainties are caused by varying the number of bins used in the fitting and found to be 3 − 5%. These two types
of uncertainties are added in quadrature to the main uncertainties of the fits. The final DP fractions are summarized
in Table I.
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TABLE I: Fractions of DP events fDP found for the three pjet2
T intervals (GeV).

pjet2
T 15 − 20 20 − 25 25 − 30

fDP 0.466±0.041 0.334±0.023 0.235±0.027

Fig. 6 shows an example of a fit for ∆Sφ in the combination of bins 15-20/20-25 GeV. Plot (a) shows the distributions
for the DP-rich dataset: data (points) and mixdp (shaded distribution) weighted with its fraction f1 found from the
minimization. Plot (b) shows analogous distributions for the DP-poor dataset: data and mixdp weighted with
f2 = Cf1. Plot (c) shows the difference of the data distributions in DP-rich and DP-poor datasets corrected for
the background contribution (K) and the relative difference of their shapes (λ) (i.e. left side of the Eq.(9)) and DP
prediction multiplied by their expected fractions (i.e. right side of the Eq.(9)). One can see that the distributions agree
well with each other. From plot (d) we extract SP distributions of the DP-rich and DP-poor dataset by subtracting
expected DP fraction from the data: (D1−f1M1)/(1−f1) (shaded area) for set 1 and (D2−f2M2)/(1−Cf2) (points)
for set 2.

The analogous predictions for SP events were done using pythia. The ∆S distribution for γ +3 jets jets simulated
with initial and final state radiation and without MPI, is shown in Fig. 7. Since the ~pT imbalance of the two
additional jets should compensate the ~pT imbalance of “γ+leading jet” system, the ∆S distribution (black points)
reveals a tendency to shift towards π. Comparing this distribution to plot (d) in Fig. 6, one can note a good agreement
between them. The DP model was also simulated with pythia without initial and final state radiation but with MPI
model (tune A-CR) turned on. In this case, the two additional jets originate from the second interaction (blue
triangles), and these γ + 3 jets events correspond to the Type I (see Fig. 2). The ∆S distribution of the DP model
is flat, i.e. the two pT balance vectors for the two systems, γ + jets and dijets, “know” nothing about each other, i.e.
they are independent from the point of view of this variable.

B. Fraction of DI events.

Similar to DP, we need fraction of the DI events to calculate σeff in (4). Jets in the 2VTX γ + 3 jets events may
originate either from the best primary vertex (PV0) or next-to-the-best vertex (PV1). We can distinguish four classes
of the events: (I) All three jets originated from PV0 or PV1; (II) Jet1 and Jet2 are from PV0(1) while Jet3 is from
PV1(0); (III) Jet1 and Jet3 are from PV0(1) while Jet2 is from PV1(0); (IV) Jet1 is from PV0(1) while Jet2 and Jet3
are from PV1(0). Thus, class (I) corresponds to the γ + 3 jets events in which all three jets come from the same pp̄
collision. All other classes (II–IV) correspond to the γ+3 jets events in which at least one jet come from an additional
collision, i.e. we have a double interaction (DI).

The fractions of events in the four classes were first found by the algorithm that exploits information of the charged
particles in jets and can determine the jet origin vertex. The algorithm is based on a method which defines the most
probable vertex as a vertex containing the highest charged particle fraction (CPF) for a given jet. It requires a jet
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FIG. 6: Results of the two-data-set fit for the ∆Sφ variable made in the combined bin 15 − 20/20 − 25 GeV.

to have at least two tracks. The fractions of DI events (fDI) found with Jet−cpf algorithm drop from about 24% at

15 < pjet2
T < 20 GeV to 15% at 25 < pjet2

T < 30 GeV.
Another way to determine the fractions of DI events is based on an application of the ∆S-family variables and

three data samples which are the 2VTX data, signal mixdi, and background bkg2vtx samples. The DI fractions are
extracted by fitting the shape of the distribution for a ∆S-family variable in mixdi and bkg2vtx samples to that
in the 2VTX data using minimization [20]. Fig. 8 shows the fractions of DI events found with the ∆Sφ , ∆SpT

and

∆Sp′

T
variables in the three pjet2

T intervals. These fractions are close to those found with the Jet−cpf algorithm and

differ from them by a relative error of 4–27%. We took a semi-difference between these DI fractions as our systematic
uncertainty in addition to the main uncertainty from the template fitting of the ∆Sφ , ∆SpT

and ∆Sp′

T
distributions

in data. The final results on the DI fraction fDI are shown in Table II.

TABLE II: Fractions of DI events fDI found for the three pjet2
T intervals (GeV).

pjet2
T 15 − 20 20 − 25 25 − 30
fDI 0.251±0.029 0.174±0.035 0.115±0.044

VI. CALCULATING σeff

The determination of σeff is based on expression (4) of Section I that includes the number of DI events NDI, the
number of DP events NDP, as well as the efficiencies to satisfy the jet and photon cuts in the DI εDI and DP εDP
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events, the efficiencies to get 1-vertex (DP candidate) ε1vtx and 2-vertex (DI candidate) ε2vtx events, and finally, the
hard pp̄ cross section σhard.

The total number of 1VTX and 2VTX γ + 3 jets events in the three pjet2
T bins after all our selections is given in

Table III. The numbers NDI and NDP in each pjet2
T bin are obtained from them multiplying by fractions of DP and

DI events, fDP and fDI, calculated in the previous section.

TABLE III: The numbers of selected 1VTX and 2VTX γ + 3 jets events in bins of pjet2
T .

pjet2

T (GeV)
Sample 15 − 20 20 − 25 25 − 30
1VTX 2479 3836 3544
2VTX 2576 3505 2912

Let us recall that the only difference between DP and DI events is caused by the number of vertices (1 vs. 2) and
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therefore the difference in the εDI and εDP efficiencies come mainly from a different amount of underlying energy
in the single and double pp̄ collision events. As a result, we can expect different jet reconstruction efficiencies (e.g.
different probabilities to pass the jet reco praw

T cut of 6 GeV, where praw
T is uncorrected (raw) jet pT ), jet finding

efficiencies and jet energy scale. For the photon selection cuts, one can naively expect to get different efficiencies due
to, for example, different amount of total pT in the track and calorimeter isolation cones around the photon.

The efficiencies for the photon selection cuts are initially estimated, using γ + jets MC events generated in pythia

[12] with processed through a geant-based [24] simulation of the DØ detector and the same reconstruction code as
used for the data. Those events are preselected with all our jet and vertex cuts and split into the 1VTX and 2VTX
samples which are used to calculate the εγ

1vtx and εγ
2vtx efficiencies. We found that the εγ

1vtx/εγ
2vtx ratio does not have

a noticeable dependence on pjet2
T and can be taken as 0.96± 0.03 by averaging over pjet2

T bins. In those estimates, we
take into account that photon purity at 60 < pγ

T < 80 GeV in data should be about 75% [16] and assume that the
photon purity is same for 1VTX and 2VTX events. To check the latter assumption, we have also analyzed MC dijet
events simulated with pythia and calculated how often they pass the photon cuts. We found that the ratio of the
photon selection efficiencies for them is 0.99 ± 0.06. Since this ratio is very close to unity and due to the expected
high photon purity, we do not correct the initial εγ

1vtx/εγ
2vtx ratio found from the γ + jets events.

The calculation of the ratios of jet efficiencies has been done in two steps. First, they are estimated using a
requirement to have at least three jets (Njets ≥ 3) with the jet pT and η cuts described in Section II. The efficiencies
have been calculated directly from γ +X and dijet (minimum bias) 1VTX and 2VTX events in data using the known
fraction of the event types (I, II and III) in mixdp and mixdi events (Section III). We found that the ratio of the

DP/DI efficiency to pass the cut Njets ≥ 3 is varied as 0.58 − 0.55 for pjet2
T changing from 15 − 20 GeV to 25 − 30

GeV with a systematic uncertainty of 5.5%. The ratio of all other jet efficiencies (to get into the pjet2
T interval, pass

pjet3
T > 15 GeV, satisfy geometric acceptance criteria) has been calculated using the mixdi and mixdp samples and

found to be within 0.95− 1.03 with about 2% uncertainty.
Taking all the photon and jet efficiencies together, we found that the final ratios of efficiencies in DP to DI events

εDI /εDP in different pjet2
T intervals to range from 0.53− 0.57 with relative uncertainty of about 6.5%.

The vertex efficiency corrects for the single (double) collision events that are lost in the DP (DI) candidate sample
due to the single (or double) vertex cuts |zvtx| < 60 cm and Ntrk ≥ 3. The ratio of the ε1vtx/ε2vtx vertex efficiencies
was calculated from data. We found that this ratio is 1.08 (0.95/0.88) with about 1% uncertainty and does not depend

on pjet2
T .

The numbers of the expected single Nc(1) and double Nc(2) pp̄ hard collisions can be obtained from the total
hard cross section σhard and the instantaneous luminosity Linst for the data sample preselected with a set of EM
triggers. For a given instantaneous luminosity, Linst, from the known frequency of beam crossings f0 for the Tevatron
in Run II and σhard, we can calculate average number of hard collisions by 〈n〉 = (Linst/f0)σhard. The value of σhard

at
√

s = 1.96 TeV can be obtained from that found at
√

s = 1.8 TeV [11, 21–23] and then extrapolating to 1.96 TeV
[25–27]. We found that σhard at

√
s = 1.96 TeV should be 44.76± 2.89 mb. In each bin of the Linst profile, one can

get 〈n〉 and then Nc(1) and Nc(2) can be found from the Poisson distribution. Summing over all the Linst bins, we
obtain that Rc = (1/2)Nc(1)/Nc(2) = 1.169.

We have to take into account that Rc and σhard enter the formula (4) for σeff as a product. Any increase of σhard

leads to an increase of 〈n〉 and, as a consequence, to a decrease in Rc. And vice versa. Specifically, the found σhard

has 6.4% relative uncertainty, while the product Rc · σhard has just about 2% relative uncertainty.

TABLE IV: Effective cross section σeff (mb) found in the three pjet2
T intervals (GeV).

σeff 15 − 20 20 − 25 25 − 30

pjet2
T 16.2 ± 2.8 13.8 ± 3.1 11.5 ± 4.7

Now we combine together all the calculations described above and use equation (4) to get σeff . The resulting values

of σeff with total (systematic ⊕ statistics) uncertainties are given in Table V for the three pjet2
T bins and are also

shown in Fig. 9. Table V summarizes all the sources of uncertainties for each pjet2
T bin. The impact from jet energy

scale (JES) uncertainties was studied by varying the jet pT within the uncertainties from the JES corrections and
recalculation values of σeff after each variation. The total systematic uncertainty varies between 17% and 40% and
is mainly caused by the determination of the DI and DP fractions as well as by the ratios of the DP/DI selection
efficiencies εDI/εDP.

One can see that the obtained σeff values in different jet pT bins agree with each other within their uncertainties.
Using this fact and also that the uncertainties in different jet pT bins have a very small correlation, we can calculate
the σeff value averaged over the three jet pT bins. It gives us
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FIG. 9: Effective cross section σeff (mb) measured in the four pjet2

T bins.

TABLE V: Systematic and statistical uncertainties (in %) for σeff .

pjet2
T (GeV) fDP fDI εDI/εDP JES Rc · σhard Syst. Total Stat. Total Exp. Total
15 – 20 8.8 11.5 6.5 5.5 2.0 16.9 2.8 17.1
20 – 25 6.9 20.0 6.5 2.0 2.0 22.3 2.3 22.5
25 – 30 11.4 38.2 6.5 3.0 2.0 40.6 2.5 40.6

σaver.
eff = 15.1± 1.9 mb. (11)

VII. CONCLUSION.

In the current analysis, we have measured the fractions of the events with double parton scattering fDP in a single
pp̄ collision in the three intervals of the second jet transverse momentum pjet2

T . The results show a decrease of fDP

from 0.466 ± 0.041 to 0.235 ± 0.027 with pjet2
T varying from 15 − 20 GeV to 25 − 30 GeV. In the same bins of pjet2

T

we have also calculated the effective cross sections σeff . We found that within uncertainties σeff does not show a
dependence on pjet2

T and the averaged value is σaver.
eff = 15.1± 1.9 mb.

It is worth mentioning that the obtained average value is in the range of those found in previous analogous measure-
ments [8–11], what indicates a stable behavior of σeff with respect to the transverse momentum of the jet produced
in the second parton-parton interaction.
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